РЕДУКТОРЫ

ЧЕРВЯЧНЫе ОДНОСТУПЕНЧАТЫЕ
универсальные
Ч-100, Ч-125, Ч-160

ПАСПОРТ

8. СВИДЕТЕЛЬСТВО О ПРИЕМКЕ И КОНСЕРВАЦИИ.

Редуктор \qquad инд. № \qquad соответствует техническим условиям ТУ2-056-0224821-313-91 принят и законсервирован в соответствии с нормативно-технической документацией и признан годным к эксплуатации.

Срок консервации Згода.
Дата выпуска и консервации \qquad " \qquad 200 r.

Приемку произвел \qquad

Место штамгта

9, ГАРАНТИИ ИЗГОТОВИТЕЛЯ

9.1. Изготовитель гарантирует соответствие редуктора требованиям технических условий при соблюдении условий транспортировки, хранения, монтажа и эксплуатации.
9.2. Гарантийный срок эксплуатации 12 месяцев со дня ввода редуктора в эксплуатацию, но не более 8000 часов для передачи в целом и 4000 часов для подшипников.
9.3.Изготовитель обязан в течение гарантийного срока безвозмездно, не позднее месяца со дня получения рекламации, отремонтировать или заменить отказавший редуктор при соблюдении потребителем условий транспортирования, хранения, монтажа и зксплуатации.
7. ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ ИХ УСТРАНЕНИЯ.

Неисправности	Вероятная причина	Метод устранения
Неравномерные резкие стуки	1. Не отрегулированы или повреждены подшипники. 2. Поломка зубьев колеса или витков червяка	1. Отрегулировіать или заменить подшипники. 2. Заменить червячную пару ипи редукор.
Перегрев масла в редукторе	1. Заедание в зацепления. 2. Нарушение регулировки подшипников. 3. Недостаток масла. 4. Залито нерекомендуемое масло.	1. Снизить нагрузку до приработки червяч-ой пары. 2. Отрегулировать или заменить подшипники. 3. Долить масло. 4. Залить рекомендуемое масло.
Повышенная вибрация	1. Несоосность валов редуктора с валами двигателя и рабочей машины. 2. Недостаточная жесткость основания привода. 3. Не затянуты фундаментные болты редуктора, двигателя или рабочей машины.	1. Устранить несоосность соединяемых валов. 2. Увеличить жесткость основания. 3. Затянуть фундаментные болты.
Течь масла через уплотнения и по плоскостям прилегания крышек подшипников к корпусу.	1. Засорение дренажного отверстия в отдушине. 2. Ослабла затяжка болтов. 3. Износ уплотнений валов.	1. Прочистить дренажное отверстие и прсімьть в керосине отдушину. 2. Затянуть бопты. 3. Заменить упчוотнения.

1. НАЗНАЧЕНИЕ РЕДУКТОРА.

1.1.Редуктор червячный одноступенчатый универсальный общего назначения 4 предназначен для уменьшения частоты вращения с одновременным увеличением крутящего момента и эксплуатации в макроклиматических районах с умеренным климатом (исполнение у с категорией размещения 1-3 по ГОСТ 15150-69.
1.2. Редуктор допускает применение в следующих условиях: нагрузка постоянная и переменная одного направления и реверсивная, работа постоянная и с периодическими остановками, вращение валов в любую сторону без предпочтительности, атмосфера типов I и II по ГОСТ 15150-69 при запыленности воздуха не более 10 мг/м.куб. Частота вращения входного вала не должна превышать 1500 об/мин.
1.3. Пример условного обозначения редуктора:

Редуктор 4-160-50-51-1-у3, где
4 - редуктор червячный одноступенчатый универсальный;
160 - межосевое расстояние, мм;
50 - передаточное число;
51 - вариант сборки;
1 - вариант расположения червячной пары;
у - климатическюе исполнение, ГОСТ 15150-69;
3 - категория размещения.

2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ.

2.1. Основные технические характеристики приведены в таблице 1.

Варианты сборок редукторов приведены на рисунке 1, основные габаритные и присоединительные размеры приведены на рисунке 2 и в таблице 2, размеры концов валов приведены на рисунке 3 и в таблице 3.

Основные технические данные указаны для непрерывной работы редуктора (ПВ=100\%) при постоянной нагрузке, температуре окружающей среды (Тв) не выше $+20^{\circ} \mathrm{C}$ и вариантах расположения червячной пары 1,3 .
2.2.В случае применения редуктора с червячной парой, расположенной по вариантам 2,4 величины нагрузок следует снизить на 20%.
2.3.3начения крутящих моментов M при $\mathrm{Tв}>+20^{\circ} \mathrm{C}$ определяются по формуле:
$\mathrm{M}=\mathrm{M} \boldsymbol{\tau}(\mathrm{Tм}-\mathrm{Tв}) / 75$
где Тм - максимально допускаемая температура масла внутри корпуса редуктора равная $95^{\circ} \mathrm{C}$; Мт - номинальный крутящий момент на выходном валу (таблица 1)
2.4. Значения КПД в первые 200 часов эксппуатации редуктора должны быть не менее 80% от указанныхв таблице 1.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Типоразмер редуктора	u	частота вращения быстроходного вала, об/мин			кпД	радиальная консольная наерузка, H	
		750	1000	1500		варианты сборок	
		номинальный крутящий момент, Н-м				51, 52	53
4-100	8	515	462	387	0,91	5600	2800
	10	500	450	375	0.90		
	115	515	462	387	0,90		
	16	500	450	387	0.86		
	20	487	437	375	0,84		
	25	475	437	375	0,83		
	31,5	515	475	412	0,75		
	40	475	437	387	0,72		
	50	475	437	387	0.71		
	63	375	345	315	0,63		
	80	355	335	300	0,60		
	8	850	750	650	0,92		
	10	825	725	630	0,91		
	12,5	825	725	630	0,90		
	16	850	750	670	0,86		
	20	825	750	650	0,85		
4.125	25	775	700	615	0,83	8000	4000
	31.5	1000	900	800	0.77		
	40	850	775	690	0,74		
	50	800	725	650	0,72		
	63	750	700	615	0.69		
	80	650	600	530	0,63		
	8	1600	1450	1250	0,93		
	10	1500	1320	1150	0,92		
	12,5	1500	1320	1150	0,91		
	16	1800	1600	1400	0,88		
	20	1500	1320	1150	0,85		
4-160	25	1400	1320	1120	0,84	11200	5600
	31.5	2000	1800	1600	0,80		
	40	1600	1450	1250	0,76		
	50	1450	1320	1180	0.73		
	63	1320	1250	1090	0.71		
	80	1320	1250	1090	0,68		

2.5. Мощность на выходном валу, передаваемая редуктором, определяется по формуле:

$$
P_{\text {вых }}=\left(M_{T} \times n_{B x}\right) /(9740 \times u \times \text { КПД) }[\kappa В Т]
$$

n_{Bx} - частота вращения входного вала редуктора, об/мин;
u - передаточное число редуктора.

Таблица 5

Содержание работ	Технические требования для видов ТО	Приборы, инструменты, материалы
TO-1		
Очистнть наружные поверхности от пыли. Проверить затяжку всех болтов и гаек, отсутствие течи масла и его уровень. При нєобходимости долить мас:7о.	Масло доливать до уровня контрольной пробки.	Ключ гаечный, масло, ветошь.
TO-2		
Выполнить рабсты по ТО-1. Отсоединить редуктор от привода и рабочей машины. Проверить и при необходимости отрегулировать зазоры в подшипниках. Заменить масло и при необходимости манжеты.	Зазоры в подшипниках входного и выходного валов редуктора должны быть не более соответственно 0,05-0,01 мм, 0,08-0,12 мм.	Оправка индикаторная, стойка с индикатором, ключ гаечный, манжеты, масло, ветошь.
TO-3		
Выполнить работы по ТО-2. При необходимости заменить и отюегулировать подшипники.	Замену производить в случае поломки или усталостного выкрашивания на телах вращения более 20% поверхности.	Тоже, что и при ТО-2.

При температуре окружающей среды от $-30^{\circ} \mathrm{C}$ до $+50^{\circ} \mathrm{C}$ рекомендуется полужидкая синтетическая смазка «Трансол-100» ТУ 38УССР201-352-84 5.8. Ориентировочный объем заливаемого масла приведен в таблице 4

Варианты расположения червячной пары	Таблииа			
	$4-100$	$4-125$	$4-160$	
1	1,5	Оипоразмеры редукторов		
2	2,7	5 ъем заливаемого масла, л		
3	3,0	5,8	3.7	
4	3,2	5,8	10,0	

6. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

6.1. Техническое обслуживание (ТО) редуктора выполняется на месте его эксплуатации обслуживающим персоналом, ознакомленным с настоящим паспортом.
6.2. Дпя редуктора, заправленного легированным маслом, устанавливаются следующие виды ТО и их периодичность:

ТО-1 через каждые 300 часов работы;
ТО-2 через каждые 2000 часов работы;
ТО-3 через каждые 4000 часов работы.
Для редуктора, заправленного нелегированным маслом типа Цилиндровое, его замену производить через каждые 500 часов. Остальное ТО выполнять как указано выше.

Через 150 часов работы после первоначального пуска редуктора произвести замену масла.
6.3. Перечень выполняемых работ в зависимости от вида ТО приведен в таблице 5
6.4. При повышении температуры масла более $95^{\circ} \mathrm{C}$ для нелегированных масел и $110^{\circ} \mathrm{C}$ для масел типа ИГП, редуктор необходимо остановить для устранения причин перегрева
6.5. При возникновении сильного шума редуктор необходимо остановить для устранения причин неполадок.
6.6. В течение гарантийного срока допускается частичная разборка редуктора потребителем только для выполнения ТО по таблице 5 .
6.7. Промывку редуктора после слива масла производить следуюцим образом: залить в редуктор керосин в объеме, равном объему заливаемого масла, прокрутить редуктор в холостую 10 минут, слить керосин и залить свежее рабочее масло.

РИс. 1 ВАРИАНТЫ СБОРОК РЕДУКТОРОВ вид сверху, червяк находятся под колесом

ВАРИАНТЫ РАСПОЛОЖЕНИЯ ЧЕРВЯЧНОЙ ПАРЫ

2

РИс. 2 ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ

Таблица 2 (крис.2)

Tипоразмер редуктора	Aw	L	L_{1}	L_{2}	L_{3}	B	B_{1}	B_{2}	B_{3}	H	H_{1}	H_{2}	D
$4-100$	100	373	240	200	225	175	225	140	45	312	100	18	19
$4-125$	125	437	275	230	261	230	230	190	60	396	111	22	19
$4-160$	160	551	350	300	345	280	280	230	70	500	140	30	22

Рис. 3 РАЗМЕРЫ КОНЦОВ ВАЛОВ
быстроходный и тихоходный

полый вал

Таблица 3 (к рис. 3)

Tипоразмер редуктора	бм					
	L	L_{1}	d	d_{1}	b	t
$4-100$	80	58	32	$\mathrm{M} 20 \times 1,5-8 \mathrm{~g}$	6	17,05
$4-125$	80	58	32	$\mathrm{M} 20 \times 1,5-8 \mathrm{~g}$	6	17,05
$4-160$	110	82	40	$\mathrm{M} 24 \times 2-8 \mathrm{~g}$	10	20,95

Tипоразмер редуктора	тихоходный вал					
	L	L_{1}	d	d_{1}	b	t
$4-100$	110	82	45	$M 30 \times 2-8 \mathrm{~g}$	12	23,45
$4-125$	110	82	55	$\mathrm{M} 36 \times 3-8 \mathrm{~g}$	14	28,95
$4-160$	140	105	70	$\mathrm{M} 48 \times 3-8 \mathrm{~g}$	18	36,375

Tипоразмер редуктора	полый вал			
	L	L_{1}	d	$D \times H 8 \times m$
$4-100$	205	90	46	$45 \times H 8 \times 2$
$4-125$	230	110	60	$50 \times H 8 \times 2$
$4-160$	275	130	72	$70 \times H 8 \times 2,5$

3. КОМПЛЕКТНОСТЬ.

3.1. В комплект поставки входят:

- редуктор в собранном виде без масла (по согласованию с заказчиком редукторы могут поставляться заправленные маслом «Трансол-100» и с запасным комплектом манжет);
- паспорт.

4. УКАЗАНИЯ МЕР БЕЗОПАСНОСТИ.
4.1. Работы по монтажу и эксплуатации редуктора должны выполняться в соответствии с требованиями ГОСТ 16162-85, ГОСТ 12.2.003-74, ГОСТ 12.3.002-75, ГОСТ 12.3.009-76.
4.2. При эксплуатации и проведении испытаний вращающиеся детали на выходных концах редуктора должны быть ограждены.
4.3. Шумовая характеристика редуктора не должна превышать значения 82 ДБА
4.4. При температуре наружных поверхностей редуктора выше $70^{\circ} \mathrm{C}$, места, доступные для обслуживающего персонала редуктора при эксплуатации должны быть ограждены или маркированы символом и дополнительной табличкой с указанием температуры.
4.5. Заливка и слив отработанного масла и проверка его уровня должны производиться только при полной остановке редуктора
4.6. Редуктор должен быть установлен для испытаний и эксплуатации таким образом чтобы был обеспечен свободный доступ к отдушине, пробкам для залива, слива и контроля уровня масла.
4.7. При разборке редуктора валы должны быть ненагружены
4.8. При производстве ремонтных работ должны соблюдаться действующие правила безопасности для такелажных, слесарных и сборочных работ.

5. ПОДГОТОВКА РЕДУКТОРА К РАБОТЕ И ПОРЯДОК РАБОТЫ.

5.1. Перед установкой с выходных концов валов удалить антикоррозийную смазку Смазку удалить салфеткой, смоченной уайт- спиритом ГОСТ 3134-73.
5.2. Редуктор и соединенный с ним приводной двигатель должны быть установлены на жестком основании, обеспечивающем неизменность их взаимного положения.
5.3. Насадить на выходные концы валов редуктора элементы соединения с приводным двигателем и рабочей машиной. Насадку элементов соединения на цилиндрические концы валов производить с предварительным нагревом их до 120 $150^{\circ} \mathrm{C}$. Производить насадку сильными ударами категорически запрещается.
5.4.При соединении редуктора с двигателем и рабочей машиной валы должны быть сцентрированы с точностью, требуемой конструкцией муфт или передач.
5.5. Перед пуском в эксплуатацию в редуктор необходимо залить чистое профильтрованное масло до уровня контрольной пробки.
5.6. Первый пробный пуск редуктора необходимо производить без нагрузки для проверки правильности монтажа и направления вращения валов.
5.7. Для смазки редуктора в зависимости от температуры окружающей среды рекомендуется применять следующие масла:
Цилиндровое 52 ГОСТ $6411-76$ от $-10^{\circ} \mathrm{C}$ до $+50^{\circ} \mathrm{C}$;
ИГП 152 ТУ $38.101413-78$ от $-10^{\circ} \mathrm{C}$ до $+50^{\circ} \mathrm{C}$;
АСЗп-6 ТУ $38.10111-75$ от $-40^{\circ} \mathrm{C}$ до $\mathrm{O}^{\circ} \mathrm{C}$.

